Chapter 5

Properties of Triangles

Section 1
Perpendiculars and Bisectors

GOAL 1: Using Properties of Perpendicular Bisectors

In Lesson 1.5, we learned that a segment bisector intersects a segment at is midpoint. A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a \qquad perpendicular bisector \qquad .

$\overleftrightarrow{C P}$ is a \perp bisector of $\overline{A B}$.

The construction below shows how to draw a line that is perpendicular to a given line or segment at a point P. You can use this method to construct a perpendicular bisector of a segment as described below the activity.

Use these steps to construct a line that is perpendicular to a given line m and that passes through a given point P on m.

(1) Place the compass point at P. Draw an arc that intersects line m twice. Label the intersections as A and B.

(2) Use a compass setting greater than $A P$. Draw an arc from A. With the same setting, draw an arc from B. Label the intersection of the arcs as C.

(3) Use a straightedge to draw $\overleftrightarrow{C P}$. This line is perpendicular to line m and passes through P.

You can measure <CPA on your construction to verify that the constructed line is perpendicular to the given line m. In the construction, $\overleftrightarrow{C P} \perp \overrightarrow{A B}$ and $P A=P B$, so $\stackrel{C P}{ }$ is the perpendicular bisector of $\overrightarrow{A B}$.

A point is \qquad equidistant from two points \qquad if its distance from each point is the same. In the construction on the previous slide, C is equidistant from A and B because C was drawn so that $C A=C B$.

Theorem 5.1 states that any point on the perpendicular bisector $\overleftrightarrow{C P}$ in the construction is equidistant from A and B, the endpoints of the segment. The converse helps you prove that a given point lies on a perpendicular bisector.

THEOREMS

theorem 5.1 Perpendicular Bisector Theorem

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

If $\overleftrightarrow{C P}$ is the perpendicular bisector of $\overline{A B}$, then $C A=C B$.

$$
C A=C B
$$

theorem 5.2 Converse of the Perpendicular Bisector Theorem

If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

If $D A=D B$, then D lies on the perpendicular bisector of $\overline{A B}$.

D is on $\overleftrightarrow{C P}$

Plan for Proof of Theorem 5.1 Refer to the diagram for Theorem 5.1 above. Suppose that you are given that $\overleftrightarrow{C P}$ is the perpendicular bisector of $\overline{A B}$. Show that right triangles $\triangle A P C$ and $\triangle B P C$ are congruent using the SAS Congruence Postulate. Then show that $\overline{C A} \cong \overline{C B}$.

Exercise 28 asks you to write a two-column proof of Theorem 5.1 using this plan for proof. Exercise 29 asks you to write a proof of Theorem 5.2.

Example 1: Using Perpendicular Bisectors

In the diagram shown, $\overleftrightarrow{M N}$ is the perpendicular bisector of $\overrightarrow{\mathrm{ST}}$.
a) What segment lengths in the diagram are equal?

b) Explain why Q is on $\overleftrightarrow{\mathrm{MN}}$.

Q is equidistant from $\mathrm{T} \& \mathrm{~S}(\mathrm{TQ}=\mathrm{SQ}) \rightarrow 5.2 \rightarrow \mathrm{Q}$ is on MN

GOAL 2: Using Properties of Angle Bisectors

The \qquad distance from a point to a line \qquad is defined as the length of the perpendicular segment from the point to the line. For instance, in the diagram shown, the distance between the point Q and the line m is $Q P$.

When a point is the same distance from one line as it is from another line, then the point is \qquad equidistant from the two lines \qquad (or rays or segments). The theorems below show that a point in the interior of an angle is equidistant from the sides of the angle if and only if the point is on the bisector of the angle.

THEOREMS

THEOREM 5.3 Angle Bisector Theorem

If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle.

$$
\text { If } m \angle B A D=m \angle C A D, \text { then } D B=D C \text {. }
$$

$$
D B=D C
$$

theorem 5.4 Converse of the Angle Bisector Theorem
If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the bisector of the angle.

$$
\text { If } D B=D C \text {, then } m \angle B A D=m \angle C A D \text {. }
$$

$$
m \angle B A D=m \angle C A D
$$

A paragraph proof of Theorem 5.3 is given in Example 2. Exercise 32 asks you to write a proof of Theorem 5.4.

Example 2: Proof of Theorem 5.3

Given: D is on the bisector of $\angle B A C . \overline{D B} \perp \overrightarrow{A B}, D C \perp \overrightarrow{A C}$ Prove: DB = DC

Plan for Proof: Prove that $\triangle A D B \cong \triangle A D C$. Then conclude that $\mathrm{DB} \cong \overline{\mathrm{DC}}$, so $\mathrm{DB}=\mathrm{DC}$. (6 sentences total)
D is on the bisector of $\angle B A C$. $D B \perp A B, D C \perp A C$ <BAD cong. <CAD
$<B$ and $<C$ are right angles
<B cong. <C
DA cong. DA
Tri. ADB cong. Tri. ADC
DB cong. DC
$D B=D C$
given
def. of < bisector def. of perp. lines right < congruence thm.
reflexive/o.s.
AAS
CPCTC
def. of cong. segments

Example 3: Using Angle Bisectors

Some roofs are built with wooden trusses that are assembled in a factory and shipped to the building site. In the diagram of the roof truss, you are given that $\overrightarrow{A B}$ bisects <CAD and that <ACB and <ADB are right angles. What can you say about $B C$ and $B D$?

$<\mathrm{CAB} \&<\mathrm{DAB}$ are congruent $\rightarrow<\mathrm{C} \&<\mathrm{D}$ are right angles $\rightarrow \mathrm{BC} \& \mathrm{BD}$ show the distance from B to $A C$ and B to $A D \rightarrow B$ is on the bisector \rightarrow it is equidistant

EXIT SLIP

